浅谈神经网络中的激活函数

  • 时间:
  • 浏览:0
  • 来源:五分时时彩_五分时时彩平台网址_五分时时彩网投平台

       激活函数是神经网络中5个 重要的环节,本文将介绍为哪些神经网络网络要利用激活函数,几种常用的激活函数(逻辑函数Sigmoid、双曲正切函数tanh、线性整流函数(ReLU),神经网络中的梯度消失大大问题 和ReLU怎样才能正确处理梯度消失。

       怎样才能让神经网络这麼进行可能够够提取非线性形态学 的卷积操作,怎样才能让该神经网络很久用激活函数,这麼你你这些 神经网络第i层输出能够Wxi+b。很久此神经网络不论有2个层,第i层的输出前会 5个 关于第i层输入xi的线性组合,大约此时多层神经网络退化为5个 多层的线性回归模型,难以学习如图像、音频、文本等繁复数据的形态学 。

       正怎样才能想要你这些 由于,神经网络要引入激活函数来给神经网络增加你你这些非线性的形态学 ,你你这些目前常见的激活函数大多是非线性函数。很久神经网络中下一层得到的输入不再是线性组合了。

2.1 逻辑函数Sigmoid [1]

       逻辑函数(logistic function)或逻辑曲线(logistic curve)是并全部都是常见的S函数,它是皮埃尔·弗朗索瓦·韦吕勒在1844或1845年在研究它与人口增长的关系时命名的。

       5个 简单的Logistic函数表达式为:

\[ f\left( x \right) = \frac{1}{{1 + {e^{ - x}}}} \]



图1 标准逻辑函数的图像

       逻辑函数形如S,你你这些通常也叫做S形函数。

       从函数图像易知f(x)的定义域为[-∞, +∞], 值域是(0,1)

       对f(x)求导数,易得

\[f'\left( x \right) = {\left( {\frac{1}{{1 + {e^{ - x}}}}} \right)^\prime } = \frac{{{e^{ - x}}}}{{{{\left( {1 + {e^{ - x}}} \right)}^2}}}\;\; = f\left( x \right)\left( {1 - f\left( x \right)} \right)\]

2.2 双曲正切函数tanh [2]

       双曲正切函数是双曲函数的并全部都是。在数学中,双曲函数是一类与常见的三角函数类似的函数。双曲正切函数的定义为

\[f\left( x \right) = \tanh \left( x \right) = \frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}\]



图2 双曲正切函数的图像(同逻辑函数类似)

       从函数图像易知f(x)的定义域为[-∞, +∞], 值域是(-1,1)

       对f(x)求导数,易得

\[f'\left( x \right) = {\left( {\frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}} \right)^\prime } = \frac{4}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}\;\; = 1 - f{\left( x \right)^2}\]

2.3 线性整流函数ReLU [3]

       线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元, 是并全部都是人工神经网络中常用的激活函数,通常指代以斜坡函数及其变种为代表的非线性函数。

       通常意义下,线性整流函数指代数学中的斜坡函数,即

\[f\left( x \right) = \left\{ \begin{array}{l} x\quad \quad x \ge 0 \\ 0\quad \quad x < 0 \\ \end{array} \right.\]



图3 ReLU函数图像

       从函数图像易知f(x)的定义域为[-∞, +∞], 值域是[0, +∞)

       对f(x)求导数,易得

\[f'\left( x \right) = \left\{ \begin{array}{l} 1\quad \quad x \ge 0 \\ 0\quad \quad x < 0 \\ \end{array} \right.\]

       使用S形函数作为激活的神经网络中,随着神经网络的层数增加,神经网络顶端层在梯度下降中求导的梯度几乎为0,从而由于神经网络网络顶端层的权值矩阵几乎无法更新。表现为随着隐藏层数目的增加,分类准确率反而下降了。你你这些 大大问题 叫做消失的梯度大大问题 。

       假设神经网络能够三层,用S型函数作为激活函数

       第一层输入为x, 输出为S(W1x+b1)

       第二层输入为S(W1x+b1),输出为S(W2S(W1x+b1)+b2)

       第三层输入为S(W2S(W1x+b1)+b2),输出为S(W3S(W2S(W1x+b1)+b2)+b3)

       一起去简记住每层在激活函数正确处理前的值为ai, 输出为fi

       假设最后损失函数为L,L是5个 关于f3的函数,这麼求导易得

\[\begin{array}{l} \frac{{\partial L}}{{\partial {W_1}}} = \frac{{\partial L}}{{\partial {f_3}}} \cdot \frac{{\partial S\left( {{W_3}S\left( {{W_2}S\left( {{W_1}x + {b_1}} \right) + {b_2}} \right) + {b_3}} \right)}}{{\partial {W_1}}} \\ \quad \quad = \frac{{\partial L}}{{\partial {f_3}}} \cdot \frac{{\partial S}}{{\partial {a_3}}} \cdot \frac{{\partial {W_3}S\left( {{W_2}S\left( {{W_1}x + {b_1}} \right) + {b_2}} \right) + {b_3}}}{{\partial {W_1}}} \\ \quad \quad = \frac{{\partial L}}{{\partial {f_3}}} \cdot \frac{{\partial S}}{{\partial {a_3}}} \cdot {W_3} \cdot \frac{{\partial S\left( {{W_2}S\left( {{W_1}x + {b_1}} \right) + {b_2}} \right)}}{{\partial {W_1}}} \\ \quad \quad = \cdots \\ \quad \quad = \frac{{\partial L}}{{\partial {f_3}}} \cdot \frac{{\partial S}}{{\partial {a_3}}} \cdot {W_3} \cdot \frac{{\partial S}}{{\partial {a_2}}} \cdot {W_2} \cdot \frac{{\partial S}}{{\partial {a_1}}} \cdot \frac{{\partial {a_1}}}{{\partial {W_1}}} \\ \end{array}\]

       其中偏导数∂S/ ∂ai是造成梯度消失的由于,怎样才能让S函数的导数阈值为

\[f'\left( x \right) = \frac{{{e^{ - x}}}}{{{{\left( {1 + {e^{ - x}}} \right)}^2}}}\;\; \in \left( {0,\left. {\frac{1}{4}} \right]} \right.\]

       即有0<∂S/ ∂a1≤0.25, 0<∂S/ ∂a2≤0.25, 0<∂S/ ∂3≤0.25, 在损失函数偏导表达式中5个 偏导数相乘有:

\[0 < \frac{{\partial S}}{{\partial {a_3}}}\frac{{\partial S}}{{\partial {a_2}}}\frac{{\partial S}}{{\partial {a_1}}} \le 0.015625\]

       很久会减小损失函数的数值,怎样才能让神经网络是20层,则有

\[0 < \frac{{\partial S}}{{\partial {a_{20}}}}\frac{{\partial S}}{{\partial {a_{19}}}} \cdots \frac{{\partial S}}{{\partial {a_1}}} \le {0.25^{20}} = {\rm{9}}.0{\rm{94}} \times {10^{ - 13}}\]

       这是5个 更小的数,你你这些神经网络后几层求第一层参数W1的梯度就非常小。而ReLU函数很久为了正确处理梯度消失大大问题 ,怎样才能让ReLU求导能够5个 值1或0,很久一句话假若神经网络梯度中根小路径上的导数前会 1,这麼无论网络有2个层,网络后几层的梯度都可能够够传播到网络前几层。

  1. https://en.wikipedia.org/wiki/Logistic_function
  2. https://en.wikipedia.org/wiki/Hyperbolic_function
  3. https://en.wikipedia.org/wiki/Rectifier_(neural_networks)